
Häme University of Applied Sciences ï HAMK

University Centre ï Hämeenlinna

Smart Services Research Unit

IoT Platform Analysis for Educational Purposes

IoT-Ticket

Keywords: IoT Platform, Smart Campus, IoT-Ticket

Project developed under the exchange program PROPICIE 14th ed., in cooperation

between the Brazilian institution Federal Institute of Santa Catarina ï IFSC and

the Finnish institution Häme University of Applied Sciences ï HAMK.

Advisors:

Joni Kukkamäki (HAMK)

Mario de Noronha Neto (IFSC)

Author:

Henrique Hilleshein

Hämeenlinna ï FI, December 2018

2

1. TABLE OF CONTENTS

2. Introduction 4

3. Objectives 4

4. Theoretical Approach 5

4.1. IoT 5

4.1.1. Five-Layered IoT Architecture 6

4.1.2. IoT Applications 7

4.2. IoT Platforms 8

4.2.1. IoT-Ticket 10

4.3. IoT protocols 11

4.3.1. MQTT 11

4.3.2. HTTP 12

4.4. SSL/TLS 13

5. Development 14

5.1. Creating and Registering Devices on the Platform 15

5.1.1. Creating Device by UI 15

5.1.2. Creating Device by RestAPI 17

5.1.3. Deleting Device 17

5.2. Creating dashboards and reports 18

5.2.1. Dashboard 18

5.2.2. Report 21

5.3. Alarms and Events 23

5.4. User Management 24

5.4.1. Creating and Editing a User 24

5.4.2. Profiles 25

5.5. Fetching Data from External API Using REST 27

3

5.5.1. Yepzon 28

5.5.2. Trusted 30

5.6. Exchanging Data with Device Using REST 33

5.7. Exchanging data with device using MQTT 35

5.7.1. Downloading the Certificates 35

5.7.2. File Management 36

5.7.3. Testing MQTT 37

5.8. Exporting Data Using CSV File 38

5.9. Extra Information 39

6. Conclusion 39

7. Acknowledgments 40

8. References 40

4

2. Introduction

By the need of a better insight and control of the environment around someone or

something, the concept internet of things (IoT) was created. IoT is technology paradigm

designed to connect machines and devices in a network, creating a global network of

machines and devices capable of interacting with each other [1]. The devices can be

sensors, RFID, computers or anything that gives useful critical and non-critical information

about an environment. Using the information received from devices is possible to do

predictions and take action when necessary.

 The result of many connected devices sending data is a big amount of data that

needs to me stored, processed and presented in an efficient and easily interpretable way

[2]. To handle this big amount of data and exploit the IoT capability, an IoT platform can be

used. An IoT platform is a tool that takes care of the storage, processing and presentation

of data, so everything can be controlled and monitored in one place.

It is possible to find many IoT platforms, some of them are open source, like

ThingsBoard, Kaa IoT Platform and WSo2. There are commercial platforms as well, such

as IoT-Ticket, Microsoft Azure IoT, Amazon Web Services IoT.

A work about open source platforms was already made [3]. In this work the proposal

is to evaluate a commercial IoT platform called IoT-Ticket. The idea is to assess the viability

of the IoT-Ticket in some scenarios for future projects and also to be used as an

educational tool to teach IoT to students.

3. Objectives

Main Objective:

Evaluate the viability to use IoT-Ticket as a IoT platform for educational and

research purposes.

Specific Objectives:

 Create and register devices to the platform

5

 Communicate to the platform using this IoT communication protocols: MQTT, HTTP,

OPC-UA;

 Access external systems using the platform;

 Export the stored data using CSV or XLS;

 Deployment of IoT-Ticket in own server and cloud;

 Conduct data analytics using the platform;

 Configure the platform user management;

 Make a practical implementation testing the communication of the IoT platform and

the protocols previously highlighted;

 Validation of real-time data visualization tools and widgets provided by the platform;

4. Theoretical Approach

In this section it is explained IoT, IoT platform, IoT protocols in a succinct way. These

concepts are needed to understand the proposal of this work.

4.1. IoT

IoT is a concept that sometimes is confused with M2M concept. The goal of IoT and

M2M is communication between devices. It enables data collection, storage and exchange.

The devices can make decisions based on the data and perform tasks with very minimal

human intervention [4].

The main difference between IoT and M2M is the connectivity. M2M depends on

point-to-point communication through a proprietary cellular or wired network. On other

hand, IoT relies on IP network to communicate the device data to the cloud or middleware

platform [4].

M2M is about connecting devices and IoT has the purpose of create a network of

connected devices. IoT uses M2M connectivity, integrate web applications, and connects

to the cloud [4]. M2M usually gives just raw data and it is used for point solution systems.

IoT give a better insight of the devices and enables integration with big data, analytics and

other applications.

6

The next subsections will give to the reader a macro view of IoT, using five-layered

IoT Architecture concept and IoT applications examples.

4.1.1. Five-Layered IoT Architecture

The five layered IoT architecture it is a way to understand and explain IoT. It

separates all that is needed to IoT works in five layers. The five layers can be seen in

Figure 1.

Figure 1. IoT five-layered architecture

Source: www.slideshare.net/radhamahalle/a-brief-review-on-evolution-of-communication-technologies

[Accessed 27 November 2018].

A brief introduction to the five layers of IoT system architecture is as follows [4]:

ǒ Perception Layer: It is responsible for gathering data from the surroundings

wielding sensors and actuators. It is done by end-node devices, such as sensors,

microcontrollers, RFID, etc.

7

 Network Layer: This layer act as a bridge to transfer incoming digitized data from

perception layer to the middleware layer. In short it is responsible for the

transmission of the data. The transmission can be done using RFID, ZigBee,

6LowPAN, WiFi, 3G/4G, BLE etc. This layer can be associated to the physical and

network layer of the TCP/IP model.

ǒ Middleware Layer: This layer after identifying the names and address provides

service to its requestors. It is with the help of this layer which IoT is capable of

connecting with heterogeneous things. Middleware is about ubiquitous computing,

services management, connection of heterogeneous things.

ǒ Application Layer: The application layer is associated with delivering services to

the customers. It incorporates protocols like CoAP, AMQP, DDS, MQTT, HTTP.

These protocols are very used in IoT systems.

 Business layer: It incorporates certain graphs, flowcharts, and models based on

the data acquired from the application layer. It is usually what end users really see

in an IoT system. It is possible to see de data in a neat way and also to analyze and

take action based on the data.

4.1.2. IoT Applications

IoT applications normally is based on gather data from devices status and sensors.

The data is accessible for users, allowing the user to have an insight of the all devices and

its respective data. Using the gathered information, the user can take action if needed or

wanted. Some analytics can be done to the data, it enables the system to take action and

process raw data. The processed data makes the system more efficient because the user

does not need to separate useful from useless information, saves storage, and reduces

the network throughput. The Figure 2 has some examples of IoT applications.

IoT enables an end user monitor and control devices using an appropriated device,

such as a laptop or smartphone. The user can know in real time information about

temperature, movement, water level or any information about an environment that the user

wants to know. A smart fridge is a good example, the user can see what is available on the

8

fridge, change temperature and predicts when will need to buy more food just using a

smartphone. A whole house can be controlled and monitored using IoT, such as watch

cameras, control garage door, control windows and so on.

Figure 2. IoT Applications

Source: www.researchgate.net/figure/Massive-IoT-applications-enabled-by-LPWANs_fig1_309617380

[Accessed 27 November 2018].

4.2. IoT Platforms

To be considered an IoT platform, a system must have the eight blocks that are shown

in Figure 3 [6].

Figure 3. IoT Platform Blocks

9

Source: [6]

Next, there is a brief explanation to each block:

¶ Connectivity & Normalization: This block enables the devices(things) to

communicate to each other. It represents all the layers of IoT mentioned before, but

business layer.

¶ Device Management: It is a tool for the management of device status, remote

software deployment and updates. When the system has just a few devices

connected, itôs not a big problem to access each device to see its status or to update

the device, but in a scenario where hundreds or thousands of devices are

connected, itôs not practical. So a device management system is needed to

efficiently manage the devices.

¶ Processing & Action Management: All the data received need to be processed

and relayed to the destination concerned in that data. Actions can be done based

on the data. Events can be created to provide better information to the user, or

alarms can be triggered when something is out of place.

¶ Data Visualization: The data visualization is about graphs, charts, 3D models, etc.

Itôs how the data is shown to the user. It has an important aspect, because to a lot

of people itôs the only part to be seen in a system that uses IoT. To many business

people the important thing is pretty self-explanatory graphs and charts when

gathering data using IoT.

¶ Analytics: In the current society a big amount of data is created each day, the

human being is not able to analyze all the data. That is why machine learning and

10

AI are growing so much in the last years. The user has a better data visualization

experience when it is provided just useful information.

With a better insight of the devices and its data, correct actions can be done faster

by the user or even the system can perform an action by itself.

¶ Additional Tools: It is the extra features that the IoT platform can provide. It gives

value to the IoT platform. Some examples of extra features are reports, mobile app

prototype, access management, etc.

¶ External Interfaces: It is the way that the platform can communicate with 3rd part

systems. It can be for example Windows AD, CRM. Companies usually have useful

systems, or legacy systems running and would like to integrate the IoT platform to

those systems. So to have a way to communicate with those system is very

important. The communication can be done via APIs, SDKs or gateways, for

example.

¶ Database: It is how all the data is stored. It is the only block of an IoT platform that

interact with all other blocks.

4.2.1. IoT-Ticket

IoT-Ticket is a proprietary IoT platform developed by Wapice Ltd. The IoT-ticket web

interface enables user to monitor and control connected devices, also analyze and

visualize the gathered data and generate reports. It is possible using widgets and logics

that allows users to interact with their devices [7].

This platform supports different kind of communications interfaces, allowing different

types of devices to be connected to the system. Such interfaces include RestAPI, OPC UA

and MQTT [7].

Some extra specifications can be found in the Table 1.

User
management

Device
management

Report Integration Security Analytics Support for
visualization

DB

Yes Yes Reports can be
created in the
platform and
ÓÅÎÔ ×ÈÅÎ ÉÔȭÓ

asked or
triggered

Rest APIs Link
Encryption
(SSL) and

basic
authentication

Web-
based

Analytics
package

and
IoT-

Ticket R
interface

Yes ODBC,
MySQL,
MSSQL,

and
Oracle

Table 1. Extra Information IoT-Ticket

11

 It was asked to the company(Wapice) if the software has any kind of limit, such as

a limit of users, devices or messages per second. The company says that the limit is the

hardware. The platform can be hosted by Wapice or by the user (own server, cloud etc.).

The RestAPI can be used to register devices, get devices information, write data

and read data. To use the RestAPI it is needed an authentication. The authentication

account is the same used on the web interface and the user need to have permission to

use the API. All the requests are based on the enterprise which the user is associated. For

example, when a device is being registered, the device will be registered on the same

enterprise than the user is part of.

The MQTT has a API that enables data exchanging between IoT-Ticket and the

devices. It is possible to control a device, such as give actions, update de firmware, change

configurations using just the platform. This interface has a lot of advantages over

RestAPI(HTTP) because of device management and the better data exchanging.

OPC-UA will not be used in this work.

4.3. IoT protocols

In this section is explained briefly the IoT protocols used in this work. IoT protocols

are application protocols that are commonly used for data exchange in IoT systems.

4.3.1. MQTT

Banks and Gupta described MQTT as ñMQTT is a Client Server publish/subscribe

messaging transport protocol. It is light weight, open, simple, and designed so as to be

easy to implement. These characteristics make it ideal for use in many situations, including

constrained environments such as for communication in Machine to Machine (M2M) and

Internet of Things (IoT) contexts where a small code footprint is required and/or network

bandwidth is at a premium.ò [8]

12

 MQTT uses publish-subscribe pattern to transfer the data between the clients. Thus

MQTT decouples the publisher from the subscriber, client connections are always handled

by a broker. The broker knows to which client relay the data using topics. Clients that want

to receive a specific data must subscribe to the respective topic, so always when a client

publish to that topic the subscribed client will receive the update [9]. In short, the broker

filter and deliver published data to the clients interested in that data(subscribers).

 The Figure 4 shows the idea of MQTT. The laptop and the mobile subscribed to the

topic ñtemperatureò and after that they start receiving any data published to that topic.

Figure 4. MQTT Protocol

Source: www.electronicwings.com/nodemcu/nodemcu-mqtt-client-with-esplorer-ide

[Accessed 27 November 2018].

4.3.2. HTTP

According to the RFC ñThe Hypertext Transfer Protocol (HTTP) is an application-

level protocol for distributed, collaborative, hypermedia information systems. It is a generic,

stateless, protocol which can be used for many tasks beyond its use for hypertext, such as

name servers and distributed object management systems, through extension of its

request methods, error codes and headersò. [10]

http://www.electronicwings.com/nodemcu/nodemcu-mqtt-client-with-esplorer-ide

13

HTTP follows a classical client-server model, where the client makes a request and

wait until it receives a response [11]. An example of HTTP is the Figure 5.

Figure 5. HTTP Protocol

Source: blogs.innovationm.com/http-protocol/

[Accessed 27 November 2018].

4.4. SSL/TLS

Security is one of the biggest issues when talking about IoT. It is getting harder to

have privacy. A lot of companies think IoT as a good asset, but they are afraid of security

flaws. The security is responsible for a lot of companies not get a step forward using IoT.

SSL it is a way to improve the security of the system. It allows to keep an internet

connection secure and safeguarding any sensitive data that is being sent between two

systems. It certifies that the client/server is who it alleged say to be and encrypt the data

transferred between the two systems. It avoids criminals from reading or modifying the

data being transferred [12].

This secure connection use SSL certificates. The SSL certificates are used to certify

that the system is who it alleges to be [12]. The certificate is issued by a certification

authority(CA) and it is associated to the system domain. Using the domain and consulting

the CA the 3rd party system can know if the connection would be secure(trustful) or not.

Depending on the type of connection, just one side need a certificate or both sides

need to have a certificate and guarantee they are who they allege to be. Using SSL, the

system does what is called SSL handshake, it is the process the systems prove who they

http://blogs.innovationm.com/http-protocol/

14

are (exchange of certificates) and also they decide the cryptography used. After the

handshake, the systems start exchanging encrypted data. Figure 6 shows an example of

a handshake between two systems (client and server) where just the server needs to prove

its identity. The last transaction of the figure is application data that it is the data encrypted

being exchanged. The application can use MQTT or HTTP to transfer the data for example,

but when they are used in a secure connection they are called respectively MQTTS and

HTTPS.

Figure 6. HTTP Protocol

Source: www.researchgate.net/figure/SSL-handshake-algorithm_fig1_323335493

[Accessed 03 December 2018].

It is important to mention that MQTTS is different of MQTT-S or MQTT-SN. They

are a modified MQTT to fit better in scenarios that have low bandwidth and need to have

low power consumption.

5. Development

In this section, the step-by-step of the development to accomplish the objectives of

this project are shown. This section will be separated in these topics:

15

¶ Creating and registering devices on the platform

¶ Creating dashboards and reports

¶ Alarms and events

¶ User management

¶ Fetching data from external API using REST

¶ Exchanging data with device using REST

¶ Exchanging data with device using MQTT

¶ Exporting data via CSV files

¶ Extra Information

5.1. Creating and Registering Devices on the Platform

The most important thing of IoT is to be able to gather data, so creating and

registering devices that will create the data to the platform is very important. There are two

ways to create/register a device on IoT-Ticket platform. The device can be created via User

Interface(UI) or using RestAPI. It is not possible to create a device using MQTT.

5.1.1. Creating Device by UI

In ñManagement Modeò, click on the enterprise that is wanted to register/create a

device, this will display the ñOverviewò page of the Enterprise. In the overview of the

interface, click on ñAdd data acquisitionò. If the button ñAdd data acquisitionò does not exist,

it means that the user is not allowed to do this action. Clicking on ñAdd data acquisitionò is

displayed ñAdd a deviceò interface. Fill out the options and click on create. When this

document was created the only ñCommunication methodò was MQTT, it may be because

this method is the only one available on the platform or because the version that is used in

this work. Even though the communication method is MQTT the RestAPI can be used to

the device.

Figure 7. Creating Device by UI ï Step 1

16

Source: Author Screenshot

Figure 8. Creating Device by UI ï Step 2

Source: Author Screenshot

When a device is created, a device ID is generated and the real device can start being

used. The device ID is how the platform identifies a device when receiving any data from

any device. To find the device ID, in ñManagement Modeò select the device created in the

tree. The location is shown in Figure 9.

Figure 9. Device ID

17

Source: Author Screenshot

5.1.2. Creating Device by RestAPI

In this work, it was used a python API provided by IoT-Ticket to handle the RestAPI

requests. This API helps the developer to create its own application. Figure 10 has an

example code of registering a device. When using the IoT-Ticket the Wapice cloud, the

URL used is https://my.iot-ticket.com/api/v1/. The username and password are the same

that used to access the UI. In this example, the user connects to the IoT-Ticket API, create

the device and in the end register the device. The outcome creating the device by RestAPI

is the same than by the UI.

Figure 10. Example code to create device

Source: Author Code

5.1.3. Deleting Device

In the REST API documentation, there is no information about a request that allows

to delete a device. The only way to delete a device is using the UI. In ñManagement Modeò,

click on the device wanted to be deleted and after click on ñDelete deviceò in the device

ñOverviewò page. If the option to delete do not show up, it means that the user has no

permission to delete the device. The button can be seen in Figure 11.

Figure 11. Deleting Device

https://my.iot-ticket.com/api/v1/

18

Source: Author Screenshot

5.2. Creating dashboards and reports

The dashboard and reports is the place where the user can have a good insight into

the data coming from the devices.

5.2.1. Dashboard

In the dashboard, the user can show the data using maps, charts, gauges, tables and

so on. It is possible to use buttons, checkbox, sliders, etc. to operate the IoT devices or the

IoT platform. The user is free to display the data in any way it thinks fit the best and also

how to control the IoT system.

To create a new dashboard, it is needed to click on ñCreate Dashboardò in the

ñDashboard Browserò. After that it will be asked the name of the dashboard and if the user

wants to use a template.

Figure 12. Creating Dashboard ï Step 1

Source: Author Screenshot

19

Figure 13. Creating Dashboard ï Step 2

Source: Author Screenshot

 When the empty layout is selected as a template, a blank dashboard is created as

can be seen in Figure 14. To edit the dashboard, right-click the number ñ1ò and click on

ñeditò. It will open the ñInterface designerò and show up a box called widgets as it can be

seen in Figure 15. Using the widgets is how a dashboard show the data. Each widget has

pros and cons, how well the data will fit the widget for the data visualization depends on

the type of the data.

Figure 14. Creating Dashboard ï Step 3

Source: Author Screenshot

Figure 15. Interface Designer

20

Source: Author Screenshot

 In ñMobile designerò, it can be created dashboards that fit mobile screens. As it can

be seen in Figure 16.

Figure 16. Mobile Designer

Source: Author Screenshot

 In ñData-flow editorò, the user can create de logic behind the dashboard. It can be

done some calculations, trigger reports, trigger alarms, create schedules and so on. Itôs

drag and drop programming as can be seen in Figure 17.

Figure 17. Data-flow Editor

